Conceptual Data Modeling and the Entity-Relationship Model

© Department of Computer Science
Northern Illinois University
September 2014
Data Models

• A means of describing the structure of the data
• A set of operations that manipulate the data (only in data models that are implemented)
• Types of data models
 – Conceptual data model
 – Logical data models - relational, network, hierarchical, inverted list, or object-oriented
Conceptual Data Model

- Shows the structure of the data including the relationships
- Communication tool
- Independent of commercial DBMSs
- Easy to learn and use
- Provides semantics
- Graphical representation of the data
- Entity-Relationship Model is most common one used in world
Logical Data Models

• Relational -
 – data stored in tables with no repeating groups allowed
 – based upon a mathematical model
 – first presented by E. F. Codd in early 1970s
 – Commercial relational data models
 • DB2, Oracle, Ingress, and Microsoft Access
Logical Data Models

- **Network** -
 - data stored in records and associations called sets
 - very complex model
 - based upon the CODASYL model
 - created by a committee in 1970’s
 - commercial DBMSs
 - IDMS and TOTAL
Logical Data Models

• Hierarchical -
 – data stored in tree structure with parent / child relationships
 – first commercial DBMS created by IBM in late 1960s
 – commercial DBMSs
 • IMS and System 2000
 – XML
Logical Data Models

• Inverted List -
 – tabular representation of the data using indices to access the tables
 – first touted themselves as relational in early 1970’s when no real relational available
 – NOT relational because repeating groups are allowed
 – commercial DBMSs
 • ADABAS (out of Germany)
Logical Data Models

- Object-Oriented –
 - Data stored as objects which contain
 - Identifier
 - Name
 - Lifetime
 - Structure
 - Commercial object-oriented DBMSs
 - O2 (now called Ardent) and ObjectStore
Entity-Relationship Model

- First introduced in 1976 by Peter P. Chen
- Simple
- Readable
- Understood easily by both database designer and unsophisticated user
Basic ER Concepts

• Entities
 – principal objects about which information is kept
 – denote a noun such as person, place, thing, or event
 – shown as a rectangle with the name (singular) inside

Person
Basic ER Concepts

• Relationships
 – associations among one or more entities
 – cannot exist without associated entities
 – represented as a diamond with name inside or just next to it

Enrolled-in OR Enrolled-in
Basic ER Concepts

• Attributes
 – characteristics of entities or relationships
 – fields in COBOL vernacular
 – sometimes shown using oval attached to entity

Person — Name
Basic ER Concepts

- **Attributes**

 - **Identifier (key)**
 - Stud-id

 - **Descriptor**
 - Name
 - Majors
 - Address
 - Street
 - City
 - State
 - Zip

 - **Multivalued descriptor**

 - **Composite attribute**
Basic ER Concepts

• Degree of a Relationship
 – the number of entities associated with a relationship
 • binary

• ternary

Student - enrolled-in - Section

Student - needs - Section

Computer Account
Basic ER Concepts

• Degree of a Relationship
 – the number of entities associated with a relationship
 • no limit (n-ary)
Basic ER Concepts

• Connectivity of a Relationship
 – constraint on the mapping of associated entities
 – written as (min,max)
 – minimum - zero or one (usually)
 – maximum - one or many (usually)
 – actual number is called CARDINALITY
Basic ER Concepts

• Connectivity of a Relationship

One-to-one
Person \(\rightarrow \) \((1,1)\) \(\rightarrow \) \((1,1)\) \(\rightarrow \) Address

One-to-many
Person \(\rightarrow \) \((1,1)\) \(\rightarrow \) \((1,m)\) \(\rightarrow \) Address

lives-at
Receives-mail-at
Basic ER Concepts

- **Connectivity of a Relationship**

 - **mandatory many-to-many**
 - **optional many-to-many**

 ![Diagram](image_url)
Basic ER Concepts

• Attributes of a Relationship
 – must be on a many-to-many relationship (NOT on a 1-m or 1-1 relationship)
 – intersection data
 – needs to know ALL associated entities to access attribute
Basic ER Concepts

Need to know BOTH Student AND Course to get to grade.
Basic ER Concepts

- Weak Entity

<table>
<thead>
<tr>
<th>Person</th>
<th>(1,1)</th>
<th>has</th>
<th>(0,m)</th>
<th>Address</th>
</tr>
</thead>
</table>

SSN

Strong Entity

Type

Discriminator

- Identifier of Address = SSN || Type
Basic ER Concepts

• Recursive Relationship: many-to-many (network)

A Person has many relatives.
AND A Person is related to many other Persons.
Basic ER Concepts

• Recursive Relationship: 1 - many (tree)

A Department reports to One and only one Department. AND A Department may have 0, 1, or more reporting to it.
Basic ER Concepts

• Recursive Relationship: many-to-many (network)

A Person has many relatives. AND A Person is related to many other Persons.
Advanced ER Constructs

• Supertype / Subtype (isa relationship)
 – generalization
 – specialization
 – overlapping subtypes
 – disjoint subtypes
Advanced ER Constructs

• Inheritance
 – the attributes describing the supertype entity are inherited by the entities of the subtypes

• The identifier of the subtypes is the same as the supertype.

• NOTE: the notation used here is different than Toby Teorey’s book.
Advanced ER Constructs

- **Generalization**
 - Supertype is the UNION of all the subtypes.
 - An instance of the supertype CANNOT exist without being related to at least one instance of a subtype.

A Person MUST be either a Faculty, Student, or Staff.
Advanced ER Constructs

- **Specialization**
 - The subtype entities specialize the supertype.
 - An instance of the supertype CAN exist without being related to any subtype.

A Person CAN be either a Faculty, Student, or Staff but DOES NOT have to be any of them.
Advanced ER Constructs

- Overlapping Subtype Entities
 - An instance of the supertype can be related to one or more of the subtypes.

A Person CAN be either a Faculty, Student, or Staff OR can be BOTH a Faculty and Student OR BOTH a Faculty and Staff OR BOTH a Student and Staff OR can be all three.
Advanced ER Constructs

- Disjoint Subtype Entities
 - the subtype entities are mutually exclusive

A Person CAN be ONLY ONE of either Faculty, Student, or Staff.
Advanced ER Constructs

- Use combinations:
 - G / O: generalization with overlapping subtypes
 - G / D: generalization with disjoint subtypes
 - S / O: specialization with overlapping subtypes
 - S / D: specialization with disjoint subtypes

A Person MUST be ONE and ONLY ONE of either Faculty, Student, or Staff.
Advanced ER Constructs

- Aggregation (ispo relationship)
 - Is-part-of
 - Is-made-up-of

An Auto is-made-up-of one Hood, four Wheels, and two doors.
Relationship is represented by a table whose Primary Key is the concatenation of the IDs of the related entities.

<table>
<thead>
<tr>
<th>SSN</th>
<th>VIN #</th>
</tr>
</thead>
<tbody>
<tr>
<td>222</td>
<td>1111</td>
</tr>
<tr>
<td>333</td>
<td>5555</td>
</tr>
<tr>
<td>444</td>
<td>8888</td>
</tr>
</tbody>
</table>

Question? What happens if a Person buys the SAME Car more than one time?
Interesting Construct

NO, because the insert would cause a duplicate instance. A duplicate instance is NOT allowed.
Interesting Construct

Now can we add to the table?
Interesting Construct

YES, because the Date attribute is part of the key.
Entity-Relationship Model

- **Person**
 - (1,1) teaches
 - (1,m) reports-to
 - (0,n) has

- **Address**
 - (1,m) reports-to
 - (0,1) with-

- **Dept.**
 - (1,1) within

- **Faculty**
 - (0,1) teaches

- **Staff**
 - (0,m) teaches

- **Student**
 - (0,m) teaches
 - (0,p) completed

- **Section**
 - (0,m) teaches
 - (0,m) of
 - (0,m) teaches

- **Course**
 - (1,1) teaches
 - (0,m) teaches

- **S,O**
 - (0,m) teaches
 - (0,n) teaches

- **Grade**
 - (0,m) teaches

- **Semester**
 - (0,1) teaches
 - (0,n) teaches

- **Credit-hours**
 - (0,m) teaches
 - (0,1) teaches
 - (0,p) teaches
Entity-Relationship Model

- **Person**
 - SSN (Identifier)
 - Name
 - Birth-Date
 - Beginning Date

- **Address**
 - Type (discriminator)
 - Street
 - City
 - State
 - Zip

- **Faculty**
 - SSN (Identifier)
 - Contact hours
 - Tenure status

- **Staff**
 - SSN (Identifier)
 - Position

- **Student**
 - SSN (Identifier)
 - Overall GPA
 - Major
Entity-Relationship Model

- **Dept.**
 - Dept-Code (ID)
 - Dept-Name
 - Dept-Address
 - Dept-Chair

- **Course**
 - Crse-Code (ID)
 - Crse-Title
 - Crse-Max-Credit-Hours
 - Crse-Var-Hours-Code
 - Crse-Fee

- **Section**
 - Sect-Code (ID)
 - Sect-Credit-Hours
 - Sect-Meet-Time
 - Sect-Meet-Day

- **Semester**
 - Sem-Yr (ID)
 - Sem-Session (ID)
Entity-Relationship Model

RELATIONSHIPS with attributes

• Student enrolled-in Section
 – Credit-hours
 • In a variable credit section this attribute would be used to hold the credit hours for which a specific student is enrolled.

• Completed
 – Grade
 • A student is allowed to take a course more than once.