Relational Database Model

and Introduction to SQL

© Department of Computer Science
Northern Illinois University
September 2014
Basic Structure

• Relation or Table
 – Named
 – NO repeating fields (no occurs clause in COBOL terminology)
 – Shown as Relation-Name (A1, A2, ….., An)

<table>
<thead>
<tr>
<th>Relation Name</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>A2</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>An</td>
</tr>
</tbody>
</table>
Basic Structure

• Columns
 – named attributes
 – must be atomic values
 – values valid within a domain

Relation Name

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>..</th>
<th>..</th>
<th>..</th>
<th>..</th>
<th>..</th>
<th>..</th>
<th>An</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basic Structure

- **Rows**
 - also called tuples
 - similar to record
 - must have primary key

<table>
<thead>
<tr>
<th>Relation Name</th>
<th>A1</th>
<th>A2</th>
<th>..</th>
<th>..</th>
<th>..</th>
<th>..</th>
<th>..</th>
<th>An</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basic Structure

• Keys
 – Super Key:
 • an attribute or set of attributes that uniquely identify a tuple
 • every relation has at least one superkey, the set of all attributes
 • a relation can have more than one superkey
Basic Structure

• Keys
 – Candidate Key:
 • a minimum set of attributes that uniquely identify a tuple
 • a minimal super key
 • a relation may have more than one candidate key
 – Primary Key:
 • one and only one per relation.
 • a chosen candidate key
Basic Structure

• Keys Example
 – Employee (Emp-ID, Emp-Name, Emp-Birthdate, Emp-Address, Emp-Salary)
 • Super key:
 – Emp-ID, Emp-Address
 – Emp-Name, Emp-Birthdate, Emp-Salary
 • Candidate key:
 – Emp-ID
 – Emp-Name, Emp-Birthdate
 • Primary key:
 – Emp-ID
Basic Structure

• Keys Example
 – Employee-Project(Emp-ID, Project-ID, Emp-Title-Proj, Hours-Worked)
 • Super key:
 – Emp-ID, Project-ID, Emp-Title-Proj
 – Emp-ID, Project-ID, Hours-Worked
 • Candidate key:
 – Emp-ID, Project-ID
 – Project-ID, Emp-Title-Proj (assuming each employee has a different title within a project)
 • Primary key:
 – Emp-ID, Project-ID
Basic Structure

- **Foreign Key**
 - used to reference another relation
 - attributes of FK have same domain as the primary key of the home relation
 - example

<table>
<thead>
<tr>
<th>Section</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sect-ID</td>
<td>Crse-ID</td>
</tr>
<tr>
<td>Sect-Time</td>
<td>Crse-Title</td>
</tr>
<tr>
<td>PK</td>
<td>PK</td>
</tr>
<tr>
<td>FK</td>
<td>FK</td>
</tr>
</tbody>
</table>

- PK
- FK
Basic Structure

- **Foreign Key**

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Crse-ID</td>
<td>Crse-Title</td>
</tr>
<tr>
<td>PK</td>
<td>PK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Student-SSN</td>
<td></td>
</tr>
<tr>
<td>PK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>completed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Crse-ID</td>
<td>Student-SSN</td>
</tr>
<tr>
<td>PK</td>
<td>PK</td>
</tr>
<tr>
<td>FK</td>
<td>FK</td>
</tr>
</tbody>
</table>
Terminology

- **Domain**
 - set of atomic valid values of one or more attribute
 - may be specified as a data type
- **Atomic values**
 - indivisible data values
- **Null value**
 - designates a MISSING attribute value
 - may or may not be allowed for an attribute
Null Values

• Does the value exist? (Y/N)
• Is the value known? (Y/N)
• Data – exists and known
• Missing – exists, but not known
• N/A – doesn't exist, but known not to exist
• Unknown – existence? value?
Terminology

• **Degree**
 - number of attributes (columns) in a relation
 - does not change dynamically

• **Cardinality**
 - number of tuples (rows) in a relation
 - changes dynamically with additions and deletions of tuples using DML
Terminology

- **Intention**
 - a named relation and its attribute names
 - also called schema of a relation
 - the DDL is used to modify the intention

- **Extension**
 - the data (tuples) in a relation
 - the state of a relation
 - the DML is used to modify the extension
Characteristics of a Relation

• Order Independence

• Two kinds
 – (1) ordering of tuples within a relation
 • do not have any particular order
 • considered an unordered set
Characteristics of a Relation

• Order Independence
 – (2) ordering of attributes within a relation
 • do not have any particular order as long as correspondence between the attribute and its values is maintained
 • Example

 Student(Stud-ID, Stud-Name, Stud-ID)

 Student(Stud-Address, Stud-Name, Stud-ID)
Relational Constraints

• Domain / Integrity Constraints
 – specify the valid values of each attribute
 – editing criteria
 • salary not > 100k
 • height < 8 feet
Relational Constraints

• Entity Integrity Constraint
 – states that no attribute of a primary key can contain a null value
 • Game (Date, Location, Time)
 – here neither Date nor Location nor both can ever contain a null value in this relation
Relational Constraints

- Referential Integrity Constraint
 - a foreign key can
 - EITHER contain an existing value of the PK in the home relation
 - OR contain a NULL value

<table>
<thead>
<tr>
<th>Sect-ID</th>
<th>Sect-Time</th>
<th>Crse-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>10:00am</td>
<td>C2</td>
</tr>
<tr>
<td>S2</td>
<td>2:00pm</td>
<td>C2</td>
</tr>
<tr>
<td>S3</td>
<td>3:00pm</td>
<td>C3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crse-ID</th>
<th>Crse-Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Course 1</td>
</tr>
<tr>
<td>C2</td>
<td>Course 2</td>
</tr>
<tr>
<td>C3</td>
<td>Course 3</td>
</tr>
</tbody>
</table>
Relational Constraints

- Referential Integrity Constraint:
 - a foreign key can
 - EITHER contain a valid value of the PK in the home relation
 - OR contain a NULL value

<table>
<thead>
<tr>
<th>Sect-ID</th>
<th>Sect-Time</th>
<th>Crse-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>10:00am</td>
<td>C2</td>
</tr>
<tr>
<td>S2</td>
<td>2:00pm</td>
<td>C2</td>
</tr>
<tr>
<td>S3</td>
<td>3:00pm</td>
<td>C3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crse-ID</th>
<th>Crse-Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Course 1</td>
</tr>
<tr>
<td>C2</td>
<td>Course 2</td>
</tr>
<tr>
<td>C3</td>
<td>Course 3</td>
</tr>
</tbody>
</table>
Relational Operators

• Update operators
 – Insert
 – Delete
 – Modify

• Retrieval operators
 – Relational Algebra
 – Relational Calculus
 – SQL
• Name derived from Structured Query Language
• Comprehensive database language
 – DDL
 – DML
 – view definition
 – transaction control
• Can be embedded in a programming language
SQL

Data Definition Language (DDL)
CREATE
DROP
ALTER

Data Manipulation Language (DML)
SELECT
INSERT
UPDATE
DELETE

Data Control Language (DCL)
GRANT
REVOKE
DDL in DB2

CREATE statement:
- CREATE STOGROUP
- CREATE DATABASE
- CREATE TABLESPACE
- CREATE TABLE
- CREATE INDEX
- CREATE VIEW
- CREATE SYNONYM

DROP statement:
- DROP STOGROUP
- DROP DATABASE
- DROP TABLESPACE
- DROP TABLE
- DROP INDEX
- DROP VIEW
- DROP SYNONYM

ALTER statement:
- ALTER STOGROUP
- ALTER TABLESPACE, ALTER TABLE, ALTER INDEX