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Abstract
Accurate estimation of effective camera focal length is

crucial to the success of panoramic image stitching. Fast
techniques for estimating the focal length exist, but are de-
pendent upon a close initial approximation or the existence
of a full circle panoramic image sequence. Numerical so-
lutions of the focal length demonstrate strong coupling be-
tween the focal length and the angles used to position each
component image about the common spherical center.

This paper demonstrates that parameterizing image po-
sition using distance over the sphere surface instead of an-
gles effectively decouples the focal length from the image
position. This new parameterization does not require an
initial focal length estimate for quick convergence, nor does
it require a full circle panorama in order to refine the fo-
cal length. Experiments with synthetic and real image sets
demonstrate the robustness of the method and a speedup of
5 to 20 times over angle based positioning.
Keywords: Focal length estimation, image stitching, par-
tial panoramas, zoom lenses

1 Introduction

Image stitchingor image mosaicingis the process of
transforming and compositing a set of images, each a subset
of a scene, into a single larger image. The transformation
for each image maps the local coordinate system present in
each image onto the global coordinate system in the final
composite.

There are several image transformation types reported
in the literature. Panoramic transformations, where the
images are acquired from a single view point, are most
common. Panoramic mosaics can be made on cylinders,
as found in QuickTime VR[3, 2] and plenoptic model-
ing [11]. Full panoramas can be placed on piecewise pla-
nar surfaces[7, 19]. Composition of image strips onto
planar surfaces under affine transformations has also been
investigated[14, 8]. Arbitrary images of planar surfaces can
also be composited[10].

In the field of aerial photogrammetry, solution tech-
niques for finding projective transformations are well
developed[1]. However, correspondence with global points
of known coordinates is used to give accuracy to the final
composition.

Image stitching can beincrementalor global. Incremen-
tal stitching works with an image pair. One of the images is
considered to be fixed. The fixed image coordinate system
is equivalent to the coordinate system of the final composite
image. The transformation of one other image is calculated
with respect to the fixed image based on their common area
of overlap, typically at least 50% in the previous work men-
tioned. The two images are composited together and the
result is used as the fixed image for stitching with the next
image in the sequence. A drawback of incremental stitch-
ing is the accumulation of error in the image transformation
parameters. This is often seen as ghosting of image features
in the final composite.

Global stitching attempts to find the simultaneous solu-
tion of transformations for all images in the image set[16,
4]. Globally optimized stitching greatly reduces the ghost-
ing errors in the final composite image.

A necessary step in creating panoramic composites is es-
timating the focal length of the camera. This can be done
as ana priori camera calibration step or as an error correc-
tion after creating a transformation solution. Both [19] and
[9] demonstrate ways of correcting the focal length estimate
based on the error of matched features on opposite ends of
the panorama. Of necessity, afull 360

�
panorama must be

acquired and stitched in order to determine the error and the
focal length correction.

1.1 High Resolution Partial Panoramas

Most of the stitching work mentioned above is used
to create hemispherical panoramas using a relatively large
camera field of view and small (� 50) number of images.
This paper examines the more restrictive problem of cre-
ating high resolution partial panoramas with zoom lenses.
In this problem, the camera field of view is very narrow
(� 10

�
), there are a large number of images (often 100 or



more) and the resulting composite fills only a small part of
the hemispherical field of view.

Focal length estimates in these situations are often non-
existent. An appropriate zoom lens setting is chosen as a
compromise between speed in the image acquisition and
the amount of image detail desired. Because a full circle
image sequence does not exist, focal length estimates can-
not be directly calculated. In addition, the narrow field of
view makes an estimate from overlapping image pairs very
inaccurate.

The rest of this paper describes a reparameterization of
the standard panoramic stitching formulas that allows for a
quick solution with no initial focal length estimate.

The work is illustrated with three image sets, one of
a mountain scene in the visible spectrum, an infrared fil-
tered set from a Mayan archaeological site in Bonampak,
Mexico[12]1, and a synthetic image set for the purpose of
comparing calculated results with known values. For each
image set, we examine the speed of convergence to a solu-
tion using both new and previously techniques.

2 Image Transformation and Solution

Creating a panoramic image from an image set is the
same as finding a position on the surface of a sphere for
every image in the set such that when the images are repro-
jected onto the sphere, the original view from the center of
the sphere is recreated.

Projective matrix transformations[6] are used to trans-
form points in the coordinate system of each image into
points surrounding the sphere. Mann and Picard[10] and
others have shown how arbitrary views of planar surfaces
and panoramic views of a 3D scene can be described as 2D
projective transformations.

Projective transforms offer a flexible set of transforma-
tions in the 2D plane. Szeliski [18] gives a good overview of
the different classes of transformations that can be achieved
through the use of 2D homogeneous matrices. A full pro-
jective transform offers eight degrees of freedom per image.
Panoramic image transforms, as developed in Section 2.1,
require only four degrees of freedom per image: three for
rotation and one for focal length. It is reasonable to assume
however, that the focal length is common for all images in
a panoramic set.

The global solution of the parameters describing the ma-
trix transformations is known asbundle adjustment[16] and
is arrived at in an iterative fashion. In bundle adjustment,a
set of point pairs (pik, p jk) is identified in overlapping im-
agesi and j such that when the points are transformed to

1All infrared video images in this paper are courtesy of Mary Miller,
Yale University; Stephan Houston, Brigham Young University Anthropol-
ogy Department; and the Bonampak Documentation Project.
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Figure 1. Panoramic image transformation. Both
position angle and arc distance parameteriza-
tions shown.

their final positions,p
�
ik andp

�
jk and normalized, the dis-

tance between the points in each pair is minimized. An
overall metric of the value of the solution is given by sum
of squares of the point pair distances after transformation:

ε��� � ∑
i � j �k

		norm�p� ik � 
 norm�p� jk �
		2 (1)

wherei and j range over pairs of overlapping images andk
ranges over a set of matched point pairs for each image pair
�i � j �. In this metric, the transformations are from individ-
ual image coordinate systems to the composite coordinate
system.

Levenberg-Marquardt minimization [15, 13], a general-
ization of gradient descent and the Newton-Raphson solu-
tion of a quadratic form, is used to find the solution.

2.1 Panoramic Image Transformation

In this section we present a detailed description of the
transformation from 2D image coordinates to the 3D coor-
dinate system of the panoramic image. This description is
similar to others elsewhere. The main purpose of this expo-
sition is to provide a point of reference when we describe
our reformulation of the transformation in section 3.1.

An illustration of the transformation is shown in Figure
1. The composition coordinate system is 3D, Cartesian, and
right handed, withx positive to the right;y positive down,
coincident with standard image pixel ordering schemes;z
positive into the scene. The optic center of the image to be
transformed is placed at the origin withx andy image axes
parallel to those of the scene. For convenience we take the
convention that the image pixel coordinates are renumbered
so that the image origin is at the optic center.

The image is translated inzby the focal lengthf in pixels
and then rotated about the origin. The rotation is almost
universally parameterized as a set of three angles. A notable



exception to this practice is [4] who use quaternions to avoid
the singularities that occur when using position angles. The
rotation decomposition that we use here is first a rotationθ1

about the optic axis in thexy plane, followed by a rotation
in theyzplane and lastly by a rotation in thexzplane.

The transformation of an image pointp to a 3D compos-
ite coordinate system pointp

�
is

p
� � Mp � RTp (2)

with

R � 


�
���

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

�
��� 
T �

�
���

1 0 0 0
0 1 0 0
0 0 1 f
0 0 0 1

�
���

resulting in a final transformation matrixM of

M �

�
���

r11 r12 r13 f r13

r21 r22 r23 f r23

r31 r32 r33 f r33

0 0 0 1

�
��� � (3)

A homogeneous initial image pointp is always of the
form �x�y�0�1�T and the transformed pointp

�
of the form

�x� �y� �z� �1�T . Consequently, the third column and fourth
row of M can be eliminated, creating a 2D homogeneous
transformation from�x�y�1�T to �x� �y� �z� �T .

After transformation, the points on the image plane have
been transformed to points on a plane tangent to a sphere
of radius f as shown in Figure 1. Matched points in differ-
ent images could easily have different distances along the
same ray from the center of the sphere. Consequently, the
transformed points must be normalized before they can be
compared.

The points can not be normalized to the surface of the
sphere. because the radius of the sphere,f , is changing
as part of the solution process. A drawback of matched
point distance error metrics is that any transformation pa-
rameter such asf that globally reduces the magnitude of all
transformed points tends to reduce their distance as well,
providing a false solution. These problems can be amelio-
rated with modified distance error metrics. [5] presents such
a metric that prevents individual image scaling parameters
from converging to zero.

However, a much better solution is to normalize the
transformed point pairs to lie on the unit sphere before com-
parison. This again is the approach taken in bundle adjust-
ment. Because the transformation is a rigid body transfor-
mation, the magnitude of the point�x� �y� �z� �T is the same as
that of the point�x�y� f �T . So the normalization can be done
using untransformed points instead of transformed points
which greatly simplifies the derivative calculations needed
in each non-linear solution step.

Figure 2. An illustration of the error induced by a
change of focal length and constant angle posi-
tions.

The final error metric used is thus

ε�θ1 
u
v
 f � � ∑
i � j �k

������
p�ik 

x2
ik ! y2

ik ! f 2 "
p� jk 

x2
jk ! y2

jk ! f 2

������

2

(4)

wherek ranges over the matched points for image pair�i � j �
and thep

�
are transformed as in Equation 2.

3 A New Parameterization

One severe problem with the bundle adjustment as pre-
sented is that it converges very slowly. This is due to the
strong coupling between the focal length and the position
angles. This coupling is demonstrated in Figure 2 where
the angle parameters for a correct stitching solution of a
synthetic grid are left intact and only the focal length is
changed from its correct value. This strong coupling con-
strains changes in focal length to be small because in focal
length drastically increase the final error measurements.

3.1 Arc Distance Parameterization

Our solution, and the key point to this paper is to de-
couple the position parameters from the focal length by us-
ing arc distance along the sphere surface instead of angles.
These distances, labeled asu andv and measured in pixels,
are used as parameters for image position on the sphere.
The parameterv is equivalent to distance along a longitude
line from the equator whileu is the distance from the longi-
tude line, along a parallel. The new transformation parame-
ters are also illustrated in Figure 1.



Figure 3. An illustration of the error induced by a
change of focal length and constant arc distance
positions.

Only the rotation matrixR in Equation 2 is changed by
theu andv parameters. Angleθ2 is replaced byv# f while
θ3 is replaced byu# f .

Using an arc distance parameterization, the relative dis-
tances between images remain comparatively unaffected by
changes in focal length. A helpful analogy is to envi-
sion a flexible sheet of images wrapped around the sphere
that readjusts as the sphere changes radius. Figure 3
demonstrates that the new parameterization is uncoupled by
altering the focal length of a correct stitching solution ofthe
same synthetic grid in Figure 2. The arc distances are left
constant. The change made to the focal length is the same
in both parameterizations.

4 Application and Comparison

In this section we compare the arc distance parameter-
ization with the standard angle-based bundle adjustment
method. We compute panoramic transformations for sev-
eral image sets using both parameterizations and exam-
ine the convergence of the focal length parameter. All
panoramic transformations in this section were computed
by Levenberg-Marquardt minimization with an extremely
conservative stopping criterion — no change in the param-
eter vector to within 10$9.

In each image set, point pairs are chosen from overlap-
ping image pairs. In the synthetic image set to be shown,
salient feature point pairs are chosen automatically. In the
real world image sets, matched point pairs are chosen by
hand. In all cases, point coordinates are refined to subpixel
precision using intensity based matching in a small region
about each pair point. The region average is subtracted out

Figure 4. A partial panoramic stitch of a synthetic
image set. The component image with a fixed
identity transformation is outlined in black.

Figure 5. The Bonampak partial panoramic
stitches. From left to right, Bonampak 1, 2, and
3. In each composite, the image with a fixed
identity transformation is outlined in white.

during the matching to help compensate for large scale, spa-
tially varying bias in the sensor.

Figure 4 shows a panoramic composite of the synthetic
grid image created specifically to test focal length accuracy.
This image set has a 10

�
field of view with a stepping angle

of 8
�

between images. With images of size 640 by 480
pixels, the true focal length is 2743.213 pixels.

Figure 5 shows three infrared composites of contiguous
sections of a Mayan mural in Bonampak, Mexico. The
images contain complex, low contrast, background texture.
The images were captured with a video camera with a zoom
lens and an IR filter. The heavy filter pushed the image
sensor close to its threshold of operation, resulting in noisy
images with accentuated spatially dependent bias. Our ap-
proach of hand picking matched point pairs was designed in
direct response to these image sets. During image acquisi-
tion, at each imaging position, the zoom was maximized to
focus on the wall and then reduced slightly to fit more con-
tent into each frame. Consequently, the true focal length is



unknown and varies with each set; within each set, thef is
assumed to remain constant.

Features in these composites are difficult to appreciate at
the scale reproduced here. However, the intersection of the
mural wall with the floor can be seen as a straight line at
the bottom of each image composite. These straight lines
are correctly reconstructed artifacts of the image data. The
composition does not use this image edge in any way.

Figure 6 shows a video composite of a mountain peak.
High zoom magnification was used to acquire these images,
resulting in a very narrow field of view of�5

�
. The true

focal length is again unknown. The full resolution size of
this image is 16126 by 3210 pixels.

For each image set, an initial solution is computed, al-
lowing only translation. The same initial solution is used
for both the spherical and projective methods. Both meth-
ods start out with an initial focal length estimate of 100,000
pixels in all cases. Table 1 summarizes the results of the
experiments.

Figure 7 shows the convergence of the focal length esti-
mation in the synthetic Grid image. Both angle and arc dis-
tance methods arrive at the same focal length estimate, but
the arc distance method converges over 7.5 times faster. The
spherical method allows the focal length estimation more
freedom to change, leading to oscillations in the estimate.
But the same freedom lets the estimate settle down to within
.1 pixel of the final value after only 30 iterations. Residual
oscillations dampen out until no change occurs within 10$9.

The final focal length estimate in this image set is
2747.548 pixels. The actual focal length is 2743.213 pix-
els. Two points need to be stated regarding this relative er-
ror of 0.16% in the focal length, which is considerably less
than errors achieved with real image sets. First, the eye-
point and center of rotation are coincident. Stein [17] has
shown the estimation error that results when the two points
are not coincident. Secondly, the estimation error in this
case can be traced to inaccuracies in the refinement of point
pair coordinates using the best match of small image regions
about the points. When exacta priori priori coordinates are
used, the focal length estimate matches the exact value to
within 3�1 %10$4. And sum squared error drops to within
0.002448.

Figure 10 shows the sum squared error for the solution
of the Grid image set.

Figures 8 and 11 show the progression of focal length
estimates and total SSQ error for the three Bonampak im-
age sets of Figure 5. The focal length estimate for the arc
distance parameterization converges 12 to 16 times faster to
its final value than the angular parameterization.

Figures 9 and 12 show the focal length estimates and to-
tal SSQ error for the Mountain image set of Figure 6. In this
example, The arc distance based estimate converges over 20
times faster than the solution based on angle parameteriza-

tion.

5 Conclusion

In this paper, we have presented a reparameterization of
the partial panoramic stitching problem based on arc dis-
tance. We have shown how the new formulation results in
robust estimates of system focal length without the need for
approximate initial estimates. We have also demonstrated a
significant increase (roughly an order of magnitude) in the
rate of convergence of focal length estimates over standard
angle based parameterizations.

Quick, robust convergence of focal length estimates ex-
tends image stitching techniques to the use of zoom lenses,
where focal lengths are unknown.

Initial work implementing the ideas in this paper showed
that arc distance parameterization alone is responsible for
the freedom of movement exhibited by the focal length pa-
rameter.

Future work will include applying the spherical distance
parameterization to intensity based error metrics, determin-
ing whether or not such a change will reduce the need for
a priori focal length estimates for this important class of
metrics.
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Figure 6. The Mountain partial panoramic stitch. The image with a fixed identity transformation is outlined
in white. The slant of vertical features in the image is due to the non-zero angle between the world up vector
and the fixed image plane.
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Figure 7. Focal length estima-
tion in the Grid image set.
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Figure 8. Focal length estima-
tion in the Bonampak image
sets.
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Figure 9. Focal length estima-
tion in the Mountain image set.
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Figure 10. Sum squared error
in the Grid image set.
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Figure 11. Sum squared error
in the Bonampak image sets.
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Figure 12. Sum squared error
in the Mountain image set.


