Spiders: A New User Interface for Rotation and Visualization of
N-dimensional Point Sets

Kirk L. Duffin
Brigham Young University
kirkl@python.cs.byu.edu

Abstract
We present a new method for creating n-
dimenstonal rotation matrices from manipulating the
projections of n-dimensional data coordinate azes
onto a viewing plane. A wuser interface for n-
dimenstonal rotation is implemented. The interface
1s shown to have no rotational hysteresis.

1 Introduction

Many techniques for visualizing n-dimensional
data sets separate the data into its component dimen-
sions, allowing the user to look at various coordinate
combinations in a way that hopefully brings under-
standing. These methods do well at avoiding the tra-
ditional projection to two dimensions that hides data.
However the data relationships are not immediately
intuitive to our brains, which are used to transforming
large amounts of information from three dimensional
projections down to two.

On the other hand, projection of n-dimensional
information down to two may be slightly more intu-
itive, but suffers from the curse of data hiding due to
projection. Moving the data in n-space, by predeter-
mined motion or direct manipulation can help solve
this problem.

Asimov’s “grand tour”[Asi85] made it possible
to step through all possible projections of an n-
dimensional data set onto two dimensions in a use-
ful manner. Hurley and Buja introduced a means of
creating “guided tours” of the data by allowing the
user to create two disparate projection plane orienta-
tions and interpolate between them[Hur88]. A good
method of interpolation is to create a n-dimensional
rotation between the two orientations and sample
along the rotation angle[BA86]. Subsequent data ro-
tation tools, while similar, have retained this inter-
polation approach for creating smooth motion in the
projected data[YR91, SC90].

Here we present a new technique for creating
n-dimensional rotations from information projected
onto the viewing plane. From this technique we
develop an interface for interactively rotating n-
dimensional point sets. User control over the rotation
sequence is fine enough that no direct interpolation
between projections is needed. Section 2 will review
some of the important principles from matrix algebra.
Section 3 will develop the main algorithm for creating
n-dimensional rotation matrices from manipulation of
data projections in the viewing plane. Section 4 will
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discuss some of the implementation aspects of the al-
gorithm and present an implementation of an interac-
tive n-dimensional rotation interface that is free from
hysteresis effects. Section 5 will demonstrate the ma-
nipulation of two 5-dimensional data sets using the
interface, and section 6 will point out some possible
areas of refinement for the interface.

2 Background
2.1 Notation

In this paper we will hold to an extension of the
notation used in most of the computer graphics liter-
ature: a n-dimensional point is represented by a n-
dimensional row vector and is post-multiplied by any
transformation matrices. The vector composed of all
zeros except for a 1 in position ¢ will be denoted e;.

2.2 Coordinate Frames

We represent a n-dimensional data set as a set
of points in an n-dimensional Euclidian space R™.
There are two ways of investigating the projection of
a set of n-dimensional points onto a 2-dimensional
viewing plane. In the first, the coordinate system
of the data and the coordinate system of the view-
ing space coincide. A viewing plane is arbitrarily
placed in the viewing space and the data is projected
onto the plane. The second approach to projecting
n-dimensional data onto a viewing plane moves the
coordinate system of the data with respect to the co-
ordinate system of the viewing space. In this latter
approach the viewing plane remains fixed.

Because a rotation leaves the coordinate system
origin invariant, it is possible to focus on the rotation
as a transformation of a vector from the origin to the
data point. This allows the creation of coordinate
frames, a cluster of unit vectors that point down the
positive principal axes of the underlying coordinate
system.

Using coordinate frames gives us some powerful
tools[Piq90]. If we start with an untransformed data
coordinate frame, multiplying each axis vector e; in
turn by the rotation matrix, it can be seen that the
new position in view space of the axis is given by row
¢ of the rotation matrix.

A corollary to this fact is that if we specify the
new position of the axis vectors such that they remain
orthonormal then the new positions define the rows of



the rotation matrix' R.

2.3 Orthogonal
n Dimensions
We define the orthogonal projection of an n di-
mensional point onto a subspace of lower dimension
(the viewing subspace) as the point in the subspace
closest to the data point. If by - - - b,,,, m < n are basis
vectors of the viewing subspace, then the projection
Xproj Of a data point x is defined by

Projections in

Xproj — ZXbZ (1)
i=1

If the b are equivalent to the standard basis vec-
tors e; then the projection of x onto b; is simply the
t-th coordinate of x.

3 Arbitrary

n Dimensions

In three dimensions, rotations are commonly
specified in terms of an angle about an arbitrary axis.
However, it is more correct to think of rotation as tak-
ing place in a plane embedded in the space[Nol67]. In
3-dimensional rotations, this plane is the plane per-
pendicular to the axis of rotation. In more than three
dimensions, the idea of rotation about an axis goes
awry because there are an infinite number of axes that
are perpendicular to any given plane. But as long as
a plane in the space is specified along with a center of
rotation in the plane, the rotation is uniquely defined.

The simplest rotation to
describe in n-dimensional space occurs in the plane
formed by any two coordinate axes. The rotation ma-
trix Rg;(0) for the rotation of axis x, in the direction
of x; by the angle 8 is

Rotations in

T = 1 i#a,i#b
Taa = cos 0
. e = cos 0
Ras(0) = { 7ij rep = —sinf
Tha = sin 6
rij = 0 elsewhere

2

That is, Rgp(0) is an identity matrix except for t(ht)e
entries at the intersection of rows a and b and columns
a and b. Since there are (g) principal axes planes, n-
dimensional rotations are built up as the composition
of specified rotations in each of the principal planes.
This composition is accomplished by multiplying the
corresponding rotation matrices together.

Our goal is to provide an intuitive means of spec-
ifying an n-dimensional interface, hopefully in a con-
cise graphical manner. The key to our approach is
in the observation that if an axis is not contained in
the viewing plane nor is perpendicular to the viewing
plane, then the axis and its projection onto the view-
ing plane define another plane in which rotation can

1 Actually, this is not quite true. The negation of a data
axis is also allowed in this definition which corresponds to a
reflection of the data about that axis. However, the algorithm
presented here will not produce reflections.

occur. Moreover, by manipulating the projection of
an axis, it is possible to rotate the axis in the rotation
plane such that the axis remains consistent with its
projection. Figure 1 illustrates this observation for
n=3.

Figure 1: A 3-dimensional coordinate frame before
rotation (1) and after rotation (r). The rotation plane
is defined by the rightmost data axis in each diagram
and its projection. The circle at the bottom of each
diagram shows the projection of the data coordinate
axes onto the viewing plane.

3.1 Rotation in the Plane

The problem here is to rotate the selected axis x;
by an unknown angle ¢ to its new position x}. All
that is known are the magnitudes of the projections
of the axis.

Let x; be a unit vector representing the positive
direction of the i-th axis of the data coordinate sys-
tem embedded in the n-dimensional viewing coordi-
nate system. The projection of x; onto the viewing
plane is denoted x;,,,,. The position and projection
of the axis after rotation are denoted x; and X;-P
respectively. See figure 2.

In the rotation plane, x; can be decomposed
into two vectors, x;,.,,, and a component orthog-
onal to the viewing plane, x;, such that x;, =
X; — X;,,,;- Lhese two vectors set up an orthogonal
coordinate system in the rotation plane. Now x; can
be represented by the coordinates (m;,,,,, m;, ) where
My, = Hxipij and m;, = [|x;_||.

roj

Since x; and x| are unit vectors, given m} |
proj

the magnitude of the new projected component can

. 2
be determined, namely m; = ,/1—m} <. Conse-
1 iproj



= Xi proj H

Figure 2: Rotation in the plane defined by x; and its
projection on the viewing plane. The data coordinate
axis vector x; is rotated to x}.

quently, the parameters for rotation in the plane are

/
cosl =x; -x; =m; .M
prog

i ; +miJ_m;J_ (3)

iproj
sinf = [|x; x xj|| = my,,,,m; — mum;-pmj. 4

Thus any vector v in the plane can be rotated using
the standard rotation equations

b (VX VX cos@ sinf
"‘<||xz» v||’||x“||)<—sin9 "> ®)

More importantly,

/ / X, ’ Xipros
! - _Tlproj 6
R T .

To determine the n-dimensional rotation matrix
R, all that remains is to find the new positions of
each axis vector. This is accomplished by decom-
posing each data space coordinate axis vector into
three components: a vector orthogonal to the rota-
tion plane, and two vector components in the rotation
plane. These last two vectors are the projection of the
data axis vector onto x;,,,; and x;, respectively. The
rotation is calculated for the rotation plane compo-
nents and the results added to the orthogonal vector
component. This gives the rotated position of the axis
vector.

Let @ and b be the coordinates of data axis x;
projected onto the rotation plane, i.e.

Xj  Xiproj

(1%, 05

(7)

a = XjprojxX;,,,; =

X Xi,

el ®)

Let x;,_,, be the orthogonal component of x; with
respect to the rotation plane. Then

b=x;jprojx;, =

Kipros XiL

l1%iprosll 1Ll

9)

Xjortn = Xj —

After rotation, the new position of the data axis

vector x} can be expressed

x, = x; + (acosf — bsinf) Xipros
7 - Jorth |Xipmj||
+(asind + bcos 6) Xis (10)
Il .|

Substituting (9) into (10) and simplifying results

in
x; = Xj+(a(cosf—1)— bsiné’)”j”éji||
+(b(cosf — 1) + asin 8) Sy (11)
1|

3.2 Algorithm

The foregoing development gives us the following
algorithm for creating an n-dimensional rotation ma-
trix.

Input:

R — the current rotation matrix. The rows
of this matrix are the axis vectors of the
data coordinate system. The elements
of R are denoted r;;.

1 — the index of the data coordinate axis

that determines the plane of rotation.
— the desired magnitude of the
projected component of the selected
data axis.
azrisy, ariss — the viewing space axes
defining the viewing plane.

/

Mproj

Output:

R’ — the new rotation matrix describing
the transformation from data
coordinate space to viewing
coordinate space.

Variables:

Mypro; — the current magnitude of the
projected component of the
selected data axis.

my — the current magnitude of the

orthogonal component of the
selected data axis.

m/|, — the orthogonal component

magnitude of the rotated data axis.
cos, sin — the rotation parameters of the
rotation.

k1, ko, sum — intermediate values

Find magnitude of projected component of selected
axis.



sum «— (
for (1 < £<2)
sum «— sum-+r

Myproj = \/SUM

Find component magnitude of selected axis
perpendicular to viewing plane.
sum — 0
for (1 < €< n)
if (£ # awis; and € # axisy)
sum «— sum + T’Z-2Z

my = +\/sum

2
i azxisy

! 2

my = 1- m;)roj
Calculate projection plane parameters.
COS — Mproj * m’pmj +mg xm
SIN = Mproj * M| — My * m;mj
Rotate each data space axis.
for (1 <j<mn)
sum «— 0
for (1< €< 2)
SUM «— SUM + Tj azis, * Tiaxis,
a — sum/my,o;
sum «— 0
for (1 < €< n)
if (¢ # awisy and £ # axisy)
SUM «— SUM + rig * r'je
b — sum/my
k1 — (a*(cos — 1) — b* sin)/mpy,j
ko — (b*(cos — 1)+ ax*sin)/my
for (1< €< n)
if (¢ = awisy or £ = axisy)
T“;»Z — T+ k1 * 7
else
T“;»Z — Trje+ ko * 7

The simplified formulation of the main inner loop
from (11) is justified by noting that if we limit the
viewing plane to be one of the principal planes in
the viewing coordinate system, then x; . has non-
zero components only along the axes specified by the
viewing plane. Likewise, x;, will always have 0 coor-
dinates in those two dimensions.

4 TImplementation

4.1 Interface

We have used two approaches in applying the
above formulas to the development of user interfaces
for n-dimensional rotation. Each approach allows the
user to select a data coordinate axis and drag the
projected end of the axis in the viewing plane. From
the path traversed in the viewing plane, a sequence of
n-dimensional rotation matrices is created. The dif-
ference in the two approaches is in how the change in
position of a selected projected axis is turned into a
rotation matrix.

In the first approach R is composed of two rota-
tions, the first occurs in the plane formed by axis x;

and its projection x;,, .. The amount of rotation is
determined by the change in length of the projected
axis. The second rotation occurs in the viewing plane
and accounts for the change in projected orientation
of x;,.,;. Figure 3 illustrates for n = 3.

However, rotation in the projection plane pro-
vides no new visual information. In practice, the set
of projected axes tends to spin wildly in the viewing
plane. This in turn makes it difficult to adjust the
relative positions of the projected axes.

The second approach to the creation of n-
dimensional rotation matrices also decomposes R, into
two rotations. The first rotation rotates the selected
axis x; in the plane formed by itself and its original
projection so that x; is perpendicular to the viewing
plane. The second rotation rotates x; from its posi-
tion perpendicular to the viewing plane to a position
consistent with the projected position. (Figure 4).

4.2 Lack of Hysteresis

This latter approach to rotation possesses a nice
theoretical quality. Let the rotation of x; from its
position on the viewing plane, x;, . = (u;,v;) to its
new position x; = (uj41,vj+1) be denoted jR; 11
for any j. But this is the composition of two other
matrices, jR; 41 = jPQ;41 where ;P is the rotation
of x; to a position perpendicular to the viewing plane
and Q; 41 is the rotation of x; from the perpendicular

. .- . ,
space to its new position corresponding to X i

Now if a user selects an axis x; at position (ug, vg)
on the viewing plane and drags the projected axis
around the viewing plane, then the rotation matrix
of this transformation is the composition of the rota-
tion matrices of every point on the path of the dragged
projected axis in the viewing plane, i.e.

oRm =oPQ11PQz - jPQjq1 - -1 PQ,  (12)

for the path in the viewing plane of (ug,vo), ---,
(U, Um)-

But rotating an axis perpendicular to the viewing
plane and then rotating it back to the same position
is an identity operation. This means that Q; ;P = 1.
Consequently, (12) collapses to

ORm = OPQm~ (13)

Thus dragging a projected axis with this method
is a conservative operation. The rotation matrix re-
sulting from dragging x;,,,; = (o, vo) to its new po-
sition x;-pmj = (Um, Um) is the same, regardless of the

path taken from (ug, vo) to (Um, vm)?.

This lack of hysteresis is a highly desirable prop-
erty for interactive rotational interfaces for at least
two reasons: First, the user can follow any path in
the viewing plane when dragging a projected axis and
be guaranteed of receiving the same rotation matrix,
given the same start and end points of the drag. If

2 As long as the path does not pass through the projection
of the origin of the data coordinate viewing system onto the
viewing plane.
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Figure 3: Repositioning a projected coordinate axis by 1) rotating for new projected coordinate axis length, and
2) rotating in the viewing plane for new projected coordinate axis orientation.

R

Figure 4: Repositioning a projected coordinate axis by 1) rotating axis perpendicular to viewing plane, and 2)
rotating out of perpendicular space to new projected axis position.

the desired projected target is overshot or missed, the
axis can be dragged back to the desired position. Sec-
ondly, the interface need not process every point in
the path of the dragged projected axis in order to
maintain consistent interface operation. If the data is
being replotted as the axis is dragged, then a rotation
matrix need be created only from the current viewing
plane position. Any other positions traversed since
the last plotting step can be discarded, giving a great
computational savings if the data set is large.

The unit quaternions also share this lack of hys-
teresis, which has generated significant interest in
their use in 3-dimensional rotation interfaces[Sho92].
Now this property can be extended to n-dimensional
rotations as well.

4.3 Orthonormality

As presented, this algorithm is highly dependent
on the fact that the axis vectors are orthonormal. In
practice, as numerical error creeps in, the rotation
matrix R ceases to be orthogonal. This is a standard
problem in 3-d interfaces where the rotation matrix
is occasionally re-orthogonalized. Our experience has
been that renormalizing the rows of the rotation ma-
trix is sufficient to maintain orthogonality. Without
renormalization, numerical error quickly dominates,
making R useless.

Actually, nothing in the derivation of the algo-
rithm depends on the mutual orthogonality of the
coordinate axis vectors. Therefore, the algorithm
given above will properly transform any set of vec-
tors through a rotation specified by a n-dimensional
vector and its projection. But in such a case, the
resulting vectors can not be used to form the new ro-

tation matrix.

4.4 Boundary Conditions

Because the algorithm decomposes every n-space
vector into two rotation plane components, it is nec-
essary that the axis x; that determines the rotation
plane be distinct from its projection onto the viewing
plane. Consequently, special measures must be taken
when x; lies in the viewing plane or is perpendicular
to the viewing plane. In practice, due to discretization
error in the interface, conditions when x; is close to
the viewing plane or close to the perpendicular must
also be considered.

In our implementation, when an axis projection
is dragged within a small distance of the center of the
viewing plane, the axis snaps perpendicular to the
viewing plane and stays there. When a user wishes to
drag one axis (of possibly several) out of the space per-
pendicular to the viewing plane, she clicks the mouse
on the center of the projected coordinate frame. A
text menu offers a selection of the available perpen-
dicular axes. After a selection is made, a point on the
viewing plane is selected, and the axis is rotated out
to this position. From there the axis can be dragged
like any others visible on the viewing plane.

5 Application

In our work in the Brigham Young University
Computer Vision Laboratory we have implemented
this interface to help visualize images and color
gamuts as 5-dimensional point sets. Each pixel in a
full color image is given five spatial coordinates: x, y,
red, green, and blue. Each of these data points is also
given a color corresponding to its red, green, and blue



components. This is done for convenience only and is
not necessary for the functioning of the interface. The
mean of the data set is subtracted from all points so
that rotation will occur about the center of the data
set.

The orthogonal projection of the data set is kept
separate from the rotational interface, which has ac-
quired the appellation of a“spider.” This is due to
the appearance of many moving “legs” on the viewing
plane when many coordinate axes are simultaneously
visible.

Our combining the projected axes into one figure
is in direct contrast to Hurley’s data viewer[HB90],
which assigns each axis its own interface item. Our
experience seems to indicate that combining the axes
into a single figure is acceptable when using relatively
low dimension data sets. However, we have imple-
mented the spiders with the facility to display an ar-
bitrary subset of the full data axis complement. We
have also used the powerful concept of linking demon-
strated by Buja, McDonald, et al[BMMS91] to link
several spiders simultaneously to a single data set.

Figure 5 shows an image undergoing 5D rotation.
At first only the x and y components are visible. Then
the red axis is dragged out of the space perpendicular
to the viewing plane. Because of the correspondence
between the color attributes and the spatial coordi-
nates,; all of the points with high red values appear to
move in the direction of the projected red axis. Note
that as the red axis is brought out slightly, a pseudo
3D effect occurs. Next the green axis is dragged out
and the x axis pushed back into the perpendicular
space. Finally, the blue axis is brought out, the y
axis pushed in, and the three remaining color axes ar-
ranged evenly in the projection plane. The points in
the data set realign themselves into a pattern remi-
niscent of a color wheel.

6 Conclusion

We have demonstrated a new method called “spi-
ders” for interactively rotating n-dimensional point
sets. The technique provides n-dimensional rotation
matrices solely from information about the current
data coordinate system and its projection onto the
viewing plane. The interface has no rotational hys-
teresis, similar to the more robust 3D interfaces used
today.

The spiders are not without problems. They do
suffer from the “curse of projection” and data hiding
with dense sets associated with all projective tech-
niques. And like other visualization methods, as more
dimensions are added to the system, the incremental
return in understanding decreases. Nevertheless, we
feel that the interactive nature of this technique pro-
vides a powerful tool to help understand the universe
of data around us.
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