
Chapter 6

Bezier Curves and Surfaces

6.1 Curves

A curve is a path through space.

From a computer graphics modeling point of view, the advantage of a curve is using a small
number of points to define a complex object.

6.1.1 Control Points and Blending Functions

Curves are often defined parametrically, i.e, as the path of a point over time. As an example
a curve could be defined using the polynomials

x(t) = 3t3 − 4t + 2
y(t) = −t2 + t− 3
z(t) = t− 1

But it is very nonintuitive what this curve would look like. It is also unclear in general what
changing the coefficients of the polynomials would do to the shape of the curve.

A common restriction of the problem is to take a small set of points, called control points

that are multiplied by functions and summed for a final result. For example, using the
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control points P0, P1, and P2, each with their own x, y, and z coordinates,

x(t) = x0(1− t)2 + x1t
2 − 3x2t

y(t) = y0(t + 1) + y2t
z(t) = z0(t

2 − 3t+ 7) + z1(sin(t))

Another common restriction is to use a small set of functions, called blending functions which
are multiplied equally by all of the coordinates of a particular control point. The curve is
then the sum of the control points multiplied by the blending functions, i.e.,

P (t) =


Pifi(t) = P0f0(t) + P1f1(t) + · · ·+ Pnfn(t)

Remember that this formula is evaluated simultaneously in x, y, and z. (In fact there is
no limit on the number of coordinates that can be assigned to a control point, making it
possible to define curves of high dimension.)

The blending functions often come in sets that are associated with the number of control
points involved. The number of control points (or blending functions) is usually called the
degree of the curve (with an adjustment by 1).

6.1.2 Desirable Properties

Many different types of blending functions have been studied. There is no set of blending
functions that works well in all situations. However, some desirable properties for controlling
curves have been identified that are satisfied with varying degrees of success by different
blending functions.

1. Interpolation

2. Convex Hull

3. Linear Independence

4. Variation Diminishing

5. Coordinate System Independence

6. Symmetry

7. and more
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6.2 Lagrange Curves

Lagrange curves give a way of finding polynomial curves that exactly interpolate a set of
points. The set of points P0...Pn determine a curve of degree n. Associated with each control
point is a specific parameter value of t, t0...tn. For each degree n there are n + 1 Lagrange
basis functions of the form

Ln
i (t) =

(t− t0)(t− t1) · · · (t− ti−1)(t− ti+1) · · · (t− tn)

(ti − t0)(ti − t1) · · · (ti − ti−1)(ti − ti+1) · · · (ti − tn)
=

k=n


k=0,k =i

(t− tk)

(ti − tk)

This basis function has the property that it has the value of 1 whenever t = ti, and the value
of 0 for any other of the t control values used in the curve.

The curve itself takes the standard form for curves using control points and basis functions:

P (t) =
n


i=0

PiL
n
i (t)

Lagrange curves do not satisfy the convex hull property or the variation diminishing property.
They wiggle too much. For example, the Langrange curve going through a set of control
points all in a straight line will be a wiggly curve.

6.3 Bezier Curves

Developed independently by Pierre Bezier - Rénault Pierre de Casteljau - Citroën DeCastel-
jau developed it first, but didn’t publish. Bezier published, and so has his name associated
with the curves. Bezier curves are founded on the Bernstein basis polynomials.

6.3.1 Bernstein Basis Polynomials

The Bernstein basis polynomials can be developed by looking at the powers of 1, more
specifically by looking at the powers of [(1− t) + t]n.

By using the binomial theorem, this expression can be expanded to

[(1− t) + t]n =


n
0



(1− t)nt0 +


n
1



(1− t)n−1t1 + · · ·+


n
i



(1− t)n−iti + · · ·+


n
n



(1− t)0tn
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where


n
i



is the binomial coefficient for the term and can be expressed by the formula

n!/i!(n− i)!.

6.3.2 Curve Evaluation

DeCasteljau’s Algorithm

6.3.3 Curve Subdivision

6.3.4 Degree Elevation

Given the control points Pi of a Bezier curve P of degree n, a new curve Q can be created
which has degree n + 1 and looks identical to the original curve. This process is called
degree elevation. The control points of Qi of the degree elevated curve are created using the
following formula:

Important Point

For degree elevation:

Qi =
n + 1− i

n+ 1
Pi +

i

n+ 1
Pi−1; 0 ≤ i ≤ n+ 1

or

Q0 = P0; Qn+1 = Pn; Qi = Pi−1 +
(n+ 1− i)

(n+ 1)
(Pi − Pi−1); 1 ≤ i ≤ n

As an example of degree elevation from degree 2 to degree 3, Q0 = P0; Q1 is 2

3
of the way

from P0 to P1; Q2 is 1

3
of the way from P1 to P2; and Q3 = P2.
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Derivation of Degree Elevation

The key to the derivation of a curve of degree n+ 1 which is identical to P (t) is to mulitply
it by a special form of 1, namely the quantity [(1− t) + t].

[(1− t) + t]P (t) = [(1− t) + t]
n


i=0

PiB
n
i (t)

= (1− t)
n


i=0

PiB
n
i (t) + t

n


i=0

PiB
n
i (t)

Expanding the Bernstein polynomials,

P (t) = (1− t)
n


i=0

Pi



n

i



(1− t)n−iti + t
n


i=0

Pi



n

i



(1− t)n−iti

Expanding the sums into two rows and collecting the like factors

P (t) = P0



n

0



(1− t)n+1 + P1



n

1



(1− t)nt + . . . + Pn



n

n



(1− t)tn

+ P0



n

0



(1− t)nt + ... + Pn−1



n

n− 1



(1− t)tn + Pn



n

n



tn+1

The key to recollecting these terms into Bn+1
i (t) is to look at combinations involving n + 1

items instead of n. So it becomes necessary to look at how


n
i



relates to


n+1

i



and how


n
i−1



relates to


n+1

i



.

For the first relationship,



n

i



n+ 1

i



=
n!

i!(n− i)!



(n+ 1)!

i!(n + 1− i)!

=
n!

i!(n− i)!

i!(n + 1− i)!

(n+ 1)!
=

n+ 1− i

n + 1

so


n

i



=
n+ 1− i

n+ 1



n+ 1

i
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In a similar fashion,



n

i− 1



n + 1

i



=
n!

(i− 1)!(n− i+ 1)!



(n+ 1)!

i!(n + 1− i)!

=
n!

(i− 1)!(n− i+ 1)!

i!(n + 1− i)!

(n+ 1)!
=

i

n+ 1

so that


n

i− 1



=
i

n + 1



n + 1

i



Plugging these expressions into the double row sum for P (t) and reforming the Bernstein
polynomials of degree n+ 1,

P (t) = P0B
n+1
0 (t) +

n

n+ 1
P1B

n+1

1 (t) + ... +
1

n+ 1
PnB

n+1

n (t)

+
1

n+ 1
P0B

n+1

1 (t) + ... +
n

n+ 1
Pn−1B

n+1

n (t) + PnB
n+1
n+1(t)

Combining like terms gives the control points Qi of the elevated curve as noted above.

6.3.5 Derivatives

Given the control points Pi of a Bezier curve P of degree n, the derivative of that curve is
given by another Bezier curve of reduced degree n− 1:

Important Point

For finding the derivative of a Bezier curve:

Qi = n (Pi+1 − Pi) ; 0 ≤ i < n
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Derivation of the Derivative

The derivative of a Bezier curve essentially comes down to combining combinations of the
derivatives of the Bernstein polynomials, Bn

i (t), i.e.

d

dt
P (t) =

n


i=0

Pi
d

dt
Bn

i (t)

The derivative of the Bernstein basis function follows from an application of the product
rule and chain rule:

d

dt



n

i



(1− t)n−iti =



n

i





i(1− t)n−iti−1 − (n− i)(1− t)n−i−1ti


This derivative is substituted back into the original form and separated into two sums:

d

dt
P (t) =

n


i=1

Pi



n

i



i(1− t)n−iti−1 −
n−1


i=0

Pi



n

i



(n− i)(1− t)n−i−1ti

Note that the range of indices has been changed slightly to eliminate two terms that evaluate
to 0, and thus don’t affect the sum.

Expanding the sums into two rows and collecting the like factors

d

dt
P (t) = P1



n

1



1(1− t)n−1t0 + . . . + Pn



n

n



n(1− t)0tn−1

− P0



n

0



n(1− t)n−1t0 − . . . − Pn−1



n

n− 1



1(1− t)0tn−1

The generalized term of this sum is


Pi+1



n

i+ 1



(i+ 1)− Pi



n

i



(n− i)





(1− t)n−i−1ti


Looking at the factors associated with Pi+1 and Pi in turn,


n

i+ 1



(i+ 1) =
n!

(i + 1)!(n− i− 1)!
(i+ 1) =

n!

i!(n− 1− i)!
= n

(n− 1)!

i!(n− 1− i)!
= n



n− 1

i



and


n

i



(n− i) =
n!

i!(n− i)!
(n− i) =

n!

i!(n− i− 1)!
= n

(n− 1)!

i!(n− 1− i)!
= n



n− 1

i
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This makes the generalized term

n [Pi+1 − Pi]



n− 1

i



(1− t)n−i−1ti

leading to
d

dt
P (t) =

n−1


i=0

n (Pi+1 − Pi)B
n−1

i (t)

6.4 Hermite Curves

6.5 Bezier Patches

6.5.1 Leaving Attributes Alone

Sometimes it is necessary to assign control point values for particular attributes when in fact
none are wanted. For example, a Bezier patch should be implicitly textured from 0 to 1.
But the mechanism should exist to assign texture coordinates to control points as needed.
So if the mechanism exists, what should the default control point values be when no explicit
values are given.

The solution lies in degree elevating a line segment to the appropriate degree. This is simply
an equal spacing of the points between 0 and 1, i.e., Pi = i/n. where n is the desired degree.
What follows is a proof (probably unnecessary) that this is indeed the same as the original
line parameterization from 0 to 1, namely P (t) = t.

The degree elevated curve, with Pi = i/n is

P (t) =
i=n


i=0

i

n



n

i



(1− t)n−i ti

Now the term when i = 0 will be zero, so the summation can start at i = 1.

Expanding the binomial coefficient,

P (t) =
i=n


i=1

i

n

n!

(n− i)! i!
(1− t)n−i ti
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and simplifying,

P (t) =
i=n


i=1

(n− 1)!

((n− 1)− (i− 1))! (i− 1)!
(1− t)n−i ti

Now factoring out a t, making a small substitution, i = j + 1, and rearranging,

P (t) = t
j=n−1


j=0



n− 1

j



(1− t)n−j−1 tj

but these are simply the Bernstein polynomials of degree n− 1, i.e.,

P (t) = t
j=n−1


j=0

Bn−1

j (t)

However, the Bernstein polynomials of a given degree all sum to 1, so P (t) = t.

Important Point

When forced to add uniform attribute values to a Bezier control polygon, increment the
value evenly from control point to control point.

6.6 Rational Bezier Curves

6.7 B-Splines

6.8 NURBS


